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We study the growth of fractal clusters in the dielectric breakdown model �DBM� by means of iterated
conformal mappings. In particular we investigate the fractal dimension and the maximal growth site �measured
by the Hoelder exponent �min� as a function of the growth exponent � of the DBM model. We do not find
evidence for a phase transition from fractal to nonfractal growth for a finite � value. Simultaneously, we
observe that the limit of nonfractal growth �D→1� is consistent with �min→1 /2. Finally, using an optimiza-
tion principle, we give a recipe on how to estimate the effective value of � from temporal growth data of fractal
aggregates.
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I. INTRODUCTION

Laplacian growth and the formation of complex patterns
has been the subject of numerous theoretical and experimen-
tal works. The classical examples are the ramified pattern
appearing in a Hele-Shaw cell when a less viscous fluid is
injected into a more viscous fluid �1� and the fractal struc-
tures emerging from the particle aggregation in diffusion-
limited aggregation �DLA� �2�. In the latter example mono-
disperse particles are released one-by-one from a remote
source and diffuse until they hit and irreversibly adhere to a
seed cluster at the center of coordinates. The cluster slowly
expands as particles are added. Statistically, the motion of a
single particle is described by the harmonic potential U sat-
isfying the Laplace equation �U=0 and the probability of
sticking to the cluster at a specific site, z, is given by the
harmonic measure ��U�z��. The formulation of DLA is con-
tained within a more general model, the dielectric breakdown
model �DBM� �3,4�, where the growth probability �� at the
cluster interface is proportional to the harmonic measure
raised to a power �, ��� ��U��. Despite intensive research in
Laplacian growth, fundamental questions regarding the scal-
ing properties still have no answer. The growth laws of DLA
and DBM are extremely simple and in apparent disparity to
the complex patterns they produce. The complex patterns
arise from a strong correlation between the position of al-
ready aggregated particles and the influx of new particles. As
the outermost tips advance, the probability for particles to
reach the parts left behind diminishes and the harmonic mea-
sure broadens and becomes even multifractal �5�. For in-
creasing values of � the growth probability will concentrate
around the tips and the fractal dimension gets closer to unity
and ultimately, in the limit of infinite �, the particle cluster
loses fractality. Recently, it has been speculated that in two
dimensions this transition from fractal to nonfractal growth
may happen at a finite critical value of � and numerically,
this value has been found to be ��4 �4,6�. In the vicinity of

such a critical point it may be safe to disregard the noise
giving rise to local density fluctuations along the branches
�7�. For that reason, the dominating stochastic component in
the cluster growth is the rate at which growing tips split in
two or more branches. While growing, neighboring branches
compete, and if one branch quickly dies after a tip splitting
the growth will stay nonfractal. It has been shown �8� that in
the idealized case of straight growing branches, tip splitting
is suppressed for ��4 supporting that �c=4. Based on the
idealized branch growth model a renormalization group ap-
proach has been used in an expansion around �c. Although
an expansion provides important information for small val-
ues of 4−� it may provide little information on DLA ��
=1�. In this paper we test the hypothesis of a critical point at
�=4 performing extensive numerical simulations. We pro-
vide detailed figures on the dependence of the fractal dimen-
sion, �min and the exponent �. Moreover, we propose a
method for extracting effective � exponents given either ex-
perimental or numerical data series. For that purpose we
make use of iterated conformal maps �9� which have proven
a convenient tool for generating conformal mappings of do-
mains of arbitrary shape �10�; see Sec. II. In Sec. III a
method is proposed for extracting effective � exponents by
optimization. In Sec. IV we present results pro et con a phase
transition in DBM, the maximal growth sites, and the fractal
dimensions.

II. ITERATED CONFORMAL MAPPINGS

The conformal invariance of the Laplace equation reduces
the problem of finding the harmonic measure, �1�z�, around
any simply connected domain in the complex plane to that of
finding a conformal transformation �=�−1�z� of the domain
to the unit disc

�1�z� =
1

����w��
. �1�

The method of iterated conformal mappings provides a gen-
eral framework to construct such transforms as well as a
simple procedure to grow DLA clusters. Assume that a DLA
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cluster of n particles is mapped to the unit disc by �n
−1. An

extra particle is added to the cluster by first adding a small
bump of size �	 to the unit disc using a mapping 
n+1 and
subsequently applying the inverse mapping �n. Finally, the
composed mapping �n �
n+1 transforms the unit disc into a
cluster of n+1 particles. The basic mapping 
n+1 is defined
by two parameters the position and size of the bump, the
position, ei�, is random in DLA since the measure is uniform
around the circle. The size �	 of the nth bump is controlled
by the condition that

�	0 = �	n����ei��� .

Consequently, the particles �transformed bumps� will all to
linear order have the same size �	0. The full recursive dy-
namics is written as iterations of the basic map

��n��w� = 
�1,	1
� . . . � 
�n,	n

�w� . �2�

Note that this structure is unusual in the sense that the order
of iterates is inverted compared to standard dynamical sys-
tems.

For DBM the growth measure along the cluster interface,
parameterized by s, is given by

���s� =
�1

��s�

� �1
��t�dt

, �3�

which for ��1 is not conformally invariant. On the unit
circle, parameterized by �, the growth measure transforms
into

�����d� 	 ���s����
 ds

d�

d� 	 ����ei���1−�d� . �4�

In the simulations we choose � according to the distribution
�� using standard Monte Carlo samplings of the measure.
The number of samples needed for an accurate estimate of
the distribution increases with � and is chosen according to

k
�	0 maxs�1�s�

. �5�

By choosing k�1, the site of maximal measure will on the
average be visited more than once during the sampling. It
turns out that there is no visible change in the scaling of the
clusters when choosing k�1. See Fig. 1 for a test of conver-
gence as a function of k; in the results presented below, we
use 2�k�8.

III. EXTRACTING EFFECTIVE � EXPONENTS
BY OPTIMIZATION

Consider an interface growing at a rate determined by
some unknown function of the harmonic measure. The
method of iterated conformal mappings is readily turned into
a framework for estimating this function. More specifically,
it is here demonstrated on numerical simulation data of the
DBM that the value of � can be extracted from a careful
tracking of the cluster growth. The general idea is to utilize

the iteration scheme in tracking the motion of the interface
by gradually expanding the mapping, see �10� for further
details. The harmonic measure is recorded as the interface
evolves, and from a maximum likelihood principle the �
value of the growth is extracted. The probability for growth
to occur at a site zn at the interface is in a given growth step
n approximated by the sum

���n,zn� =
�1

��n,zn�

�z
�1

��n,z�
. �6�

From this expression, more ways exist to estimate the �
value used in the simulation. Assuming that the nth growth
event occurred at the site zn, a direct estimate of � follows
from maximizing ���zn� with respect to �. Naturally, this
will lead to dramatic fluctuations in the estimates and there-
fore maximizing products of �� over several growth steps
provides a better estimate,

�
k

���k,zk� . �7�

In Fig. 2, we show how this product varies as function of
� and with the number of factors used. With an increasing
number of factors the maximum becomes more pronounced
and the � value used in the simulations is easily recovered.
These products confirm that the number of Monte Carlo
samples used in Eq. �5� are appropriate and, more impor-
tantly, that the method is directly applicable to experimental
data for estimating an effective � value or more generally the
boundary condition function determining the growth rate.

IV. DIMENSION AND �min

The dimension of a cluster grown by this conformal map-
ping technique is determined by the first term in the Laurent
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FIG. 1. �Color online� Test of convergence for the deployed
Monte Carlo method. Estimates of the fractal dimension for �=4
and for Monte Carlo samples given by k=1 /4,2 ,8 ,32 in Eq. �4�.
For each data point, we used four clusters of size 40000 particles.
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expansion of ��n�, F1
�n�, which will scale like F1

�n�	n1/D�	0
�9�. The dimension is thus estimated by a direct fit of this
scaling law as demonstrated in Fig. 3 for a cluster 80000
particles and �=4.0.

Using the conformal mapping technique we have grown
clusters up to sizes 80000 particles with varying values of �
in the interval �� �1,5�. Figure 4 shows the results for the
value of the dimension versus �. As is clear from the figure,
the value of the dimension decreases smoothly with �, from
the DLA value D=1.71 for �=1 down towards D	1 for
�→. Hastings �8� presented arguments in favor of an upper
critical dimension �c=4 for which the clusters become one-
dimensional. We however do not observe indications of this
transition. As seen in Fig. 4 it is quite clear that the data
smoothly bends away before reaching the point �� ,D�
= �4,1� and only approaching the one-dimensional growth in

the limit of large � values. We thus conclude that a critical
point at a finite � does not exist.

Halsey �7� has computed a first-order correction to D for
��4, obtaining D=1+ 1

2 �4−��+O�4−��2. This relation pre-
dicts a linear variation of slope 1

2 around �c=4. As seen in
Fig. 4 we do not observe this behavior.

It is well known that the growth measure of a DBM
model exhibits multifractal properties with a spectrum of
growth exponents measured by local Hoelder exponents �
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FIG. 2. Product of the growth measure, maximum likelihood,
�k=1

N ���2k ,z2k� as a function of �, for N=15,150,1500 �A, B, and C,
respectively�. The clusters applied were grown with �a� �=2 and
�b� �=4, consistent with the extreme values of the maximum like-
lihood. Note that the products were normalized by their maximum
value and that every second growth step was used only. The latter
was done to avoid the products becoming too small.
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FIG. 3. �Color online� First Laurent coefficient versus cluster
size for �=4 and 80000 particles �with k=2, see text�. The added
line is a fit of the fractal dimension D=1.10.

1 2 3 4 5

1.
0

1.
2

1.
4

1.
6

1.
8

η

D
im

en
si

on

FIG. 4. �Color online� Computed values of the fractal dimension
versus �. The dimension was extracted from a fit of the first Laurent
coefficient F1 using clusters of sizes 20000–40000 particles for �
�3.5 and 40000–80000 particles for ��3.5. Each data point is
averaged over 20 clusters and the error bars are estimated by the
standard deviation.
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�5�. The points of highest growth measures are characterized
by the minimum � value, �min. We have previously deter-
mined this value using the iterated conformal mapping tech-
nique �11� and extend it here to the DBM model. In this
method, it is very easy to keep track of where the maximum
growth probability is located as more particles are added. Let
us assume that at the �n−1�th growth step the site with the
largest probability is located at the angle �max on the unit
circle, i.e., for all �

1

���n−1���ei�max��
�

1

���n−1���ei���
. �8�

When we add a new bump in the nth growth step the position
of maximal probability may not change �up to reparametri-
zation of the angle �max�, or move to the new bump. We can
easily find the reparametrized angle and determine the new
position from

�1
max,n = max 1

���n����	n,�n

−1 �ei�max���
,

1

���n���ei�n��� . �9�

If �1
max,n is located at �n we put �max=�n in the �n+1�th

growth step. Using conformal mappings, we have also pre-
viously estimated the critical branching angle as a function
of � in the DBM model �12�.

Figure 5 shows the results of �min vs � and we observe
that �min decreases from the DLA values �min=0.68 down to
�min=0.5. It is obvious that �min=0.5 corresponds to the
Hoelder exponent for a line. In consistency with the results
in Fig. 4 we observe that the curve bends smoothly and that
the one-dimensional growth is only obtained in the limit �
→. The last figure, Fig. 6, shows �min plotted vs D. By

extrapolation �as indicated by the line� we see that �min as-
sumes its minimal value 0.5 at a dimension D=1.0.

V. CONCLUSIONS

The conclusions of our paper are twofold. First, we have
presented a method to extract the effective value of the
growth exponent �, for a time series of growing aggregates,
assuming an underlying mechanism based on the dielectric
breakdown model �DBM�. The estimate is based on a maxi-
mum likelihood method and converges rather well for the
numerical data presented here. We believe this method
should be directly applicable to experimental data when it is
possible to extract intermediate steps in the formation of the
aggregates. We urge the method to be used in, for example,
viscous fingering experiments in random media �13�. Sec-
ond, we have thoroughly investigated the scaling structure of
DBM clusters as a function of the growth exponent �. Based
on extensive numerical simulations we do not find support
for the conjecture that the growth becomes one-dimensional
at the critical value �c=4 �7,8�. On the contrary, our results
indicate that a critical point at finite � value does not exist,
and that the scaling exponent of the maximal growth site
�min assumes its minimal value 0.5 when the growth be-
comes nonfractal.
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FIG. 5. �Color online� Computed values of �min versus � using
the same clusters as in Fig. 4.
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FIG. 6. �Color online� �min versus the fractal dimension D. The
data are the same as used in Figs. 4 and 5.
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